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1 Introduction 

Autoregressive models hae been widely used in Stochastic Hydrology for many years. 
Thomas and Fiering (1962) originally proposed the use of  first-order periodic autoregres- 
sive models for modeling mean monthly unregulated riverflow. Also, Yevjevich (1963) 
proposed the use of  first order autoregressions for modeling mean annual unregulated 
river flow. Furthermore, Hipel and McLeod (1978) found that many types of annual geo- 
physical time series could be modeled by simple autoregressive or autoregressive - mov- 
ing average time series models. In this paper, methods of outlier detection in autoregres- 
sive models are discussed. 

Although the word "outlier" appears frequently in the statistical literature, there does 
not seem to exist a generally accepted definition. In the estimation of a single parameter, 
e.g., the location parameter, from independent identically distributed (i.i.d.) observations, 
outliers are often understood to be "extreme" points in some sense. In this case, outliers 
can be very often detected by "eyes". Unfortunately, the situation with time series data 
seems to be more complex. "Outliers" in time series are not necessarily "outliers". 
Although not always fully justified, a widely used method for outlier detection in the 
context of  time series is based on the residuals. This might stem from the fact that in, 
e.g., the Box and Jenkins' approach (1970), residuals are used for diagnostic check on the 
assumptions about the error term. In the following sections, I we point out some limitation 
of using residuals for this purpose, especially for outlier detection. A new approach, 
which is not based on the residuals, is explored. Its emphasis is on the influence of  data 
and our presentation is heuristic. The approach is based on the hat matrix technique, 
which in the present context admits an interesting interpretation as the Mahalanobis dis- 
tance. The new method is illustrated with both real and simulated data, including one set 
of  real data pertinent to hydrology. 
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2 Linear  autoregressive model  

We consider the linear Gaussian autoregressive model of order p (AR (p)): 

Yt = ~l~t-l?l-~2Yt-2 -t- " ' " q-~ Yt-p +et (2.1) 

where et 's  are i.i.d, and et - N(0,a2) �9 Following Martin's notation (Martin, 1980), we let 

z[ = (~,-,3"t-2 . . . . .  rt-p), , r  = ( '1, '2  ..... *p). 

Then (2.1) can be rewritten as 

Yt = ztr~g-et �9 (2.2) 

Suppose now we have n observations Y1,Y2 ..... In.  Then we have the following n equa- 

tions 

Y = F~-e. (2.3) 

where Y = (Y1,Y2 ..... In) T is an n x l  observation vector, e = (~1,e2 ..... en) T is an n x l  vector 

of random errors, and 

F =  - "  = i 

�9 T -1 Yn-2 " Yn-p Z n 

a n  n •  " d e s i g n  m a t r i x " .  

Yi, i<O, are assumed fixed, say at zero. The usual root condition is assumed 

throughout so that {Yt} is stationary. For the estimation of ~ and er 2, the conventional 

least squares procedure can be conveniently applied with well-known large sample pro- 
perties due to Mann and Wald (1943). 

We summarize first some well-known results as follows: 

(i) The least square (L.S.) estimate ~ of ~ is given by 

= ( r r r ) - l r r y  (2.5) 

(ii) Let ~ = F ~ )  be the fitted values. The least square fitted residuals (LSR), 
r = (r 1, r 2 . . . . .  rn) T, are defined by 

r = Y - ~ .  (2.6) 

Note that ~ = F/~ = F ( F r F ) - I F T y ,  i.e. 

"~ = H Y ,  (2.7) 

where H = F(FTF)- IF  T. 

Here, H = [hi)] is known as the hat matrix in the context of oufliers. Since 

(I-H)F(~ = r q - r ( r r r ) : l r r r r  = o 

we have from (2.6), (2.7) that 

r = ( I -H)Y = ( I -H)(F~+e)  = ( / -H)e  (2.8) 

In addition, (2.8) and (2.9) can be rewritten in scalar forms viz. 



r t = ( l - hn )Y  t - ~_~htjY j = (1-ht t)e  t - ~,htje j.  
jet jr 

(iii) The L.S. estimate of o 2 is given by 

~2 = rTr /n  
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(2.9) 

(2.10) 

From now on, we denote the "Diagonal Element(s) of the Hat matrix" by DEH, and the 
t-the DEH, hn, by ht, i.e. 

ht = z [ ( F r r ) - l z t .  

n-l rT 2 , ,  (iv) By stationarity of {Yt}, it holds that as n-+o% ( F) ~ where 

t I 
Yo Y1 . . .  Yp-1 
Wl Wo "-- Wp-2 

~ =  " . . .  " , Ys  =cov(Yt,Yt+s), a Toeplitz matrix. 

Now, conditional on H being fixed, it holds that 

var(r  ) = ( I -H)var ( e )  = (I-H)O2. 

In scalar form, equation (2.11) becomes 

var(rt)  = (1-ht)o -2, cov(ri ,r j)  = - h i j c  2. 

(2.11) 

3 Hat Matrix in linear autoregressive time series modeling 

The hat matrix H = F(FTF)-IF T has been receiving increasing attention in conventional 
regression analysis for a considerable length of time. See, e.g., Hoaglin and Welsch 
(1978), Cool and Weisberg (1979), Belsley, Kuh and Welsch (1980) and Cook and Weis- 
berg (1982). Huber (1981) has discussed some particular aspects of the hat matrix in 
regression analysis. Research on the role of hat matrix in the context of time series 
seems to be lacking�9 We will see that the hat matrix has in fact particularly interesting 
properties in the case of autoregressive modeling. We summarize first some well-known 
properties of H as follows: 

(i) H is idempotent,  i.e., H 2 = H,  H T = H. 

(ii) t race(H)  = rank(H)  = p  = A R  order (3.1) 

(iii) H 2 = H ~ V t ,  j = 1 . . . . .  n, ~hty  = h t (3�9 
J 

z h (iv) From (3.2), we have hT + ~ h t j  = t. (3�9 
j ~  

ht> h?, O<_ht <_l. 

(v) From (3.3) we have ~hty-+O as h t -+l .  (3.5) 
j~t 

I t  fo l lows  that htj--+OVjg:t as ht--+l. 
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3.1 Interpretations of hat matrix in linear autoregressive time series models 

(1) Recall that the fitted values (sometimes also called the predictions) may be 
expressed as 

'~ = F~ = F(FTF)-IFTy = HY (3.6) 

In scalar form, we may write 
A 
Yt = htYt + •htjYj.  (3.7) 

yet 
A 

From (3.7) and Section 3(v), we know that if h t is large (i.e. near 1), Yt will be 
dominated by the term htYt.ATherefore h t may be interpreted as the amount of lever- 
age or influence exerted o n  Yt by Yr. 

We note that the relationship between the fitted values and the estimates ~ is given 
by 

= r ~  and /~= (rrr)-arr~ 

Hence, knowing ~ is equivalent to knowing ~. In our case, it is easier to interpret ~' 
than ~. Therefore we refer more often to ~'. 

(2) Differentiating (3.7) w.r.t. Yt ,  we have 

or 
Ort - ht' (3.8) 

which shows that h t measures approximately the relative change of the fitted value ^ 
Yt when there is a small change in the observation value Yt. 

Define d t = zT]~-lzt , t=l,  2 ..... n. Then d t is just the Mahalanobis distance 

between z t and the zero vector (or the mean vector of zt's in the general case). Note 

also that 

nh t = zT( FTF ) - l z t S d  t as n~oo.  (3.9) 
n 

Therefore nh t has the interpretation as the Mahalanobis distance between z t and the 
mean vector (zero vector in our case). Note that in conventional linear regression, 
ht's do not have this explicit interpretation. 

(3) 

4 Limitations of LSR for diagnostic check and outlier detection 

Since Et's are unobservable, LSR are often used as substitute. Although fitted residuals 

have been routinely used in the time series context and they possess many useful proper- 
ties, it is our view that they also suffer from a number of limitations which we list as fol- 
lows: 

(1) By assumption, the errors, et's, are independent random variables with zero mean 

and a common variance c 2. For large n, the residuals rt 's  also have zero mean, but, 

from (2.11), they tend to be correlated. 

(2) Equation (2.8) shows clearly that r and e are different, and the difference depends 
only on H. If  all the hij's are sufficiently small, r will serve as a reasonable substi- 
tute for E. Otherwise, the usefulness of r may be limited. For example, supposing 
now that Yt is an outlier, then at first sight e t could be expected to be large (in 
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absolute value). However, if h t is also large, then by reference to (2.9) it is conceiv- 

able that r t may be reduced to a small value. As a result, the outlier Yt may go 
unnoticed if we examine only the LSR. 

(3) When the AR order is roughly specified, then examination of LSR is not always as 
informative as we would like it to be. Specifically, let the true AR(p) model be of  
the form 

Y : Fpt~p+E (1) (4.1) 

where Fp = F as in (2.4), Cp = (dOl,(~2,...,~lp) T, and e (1) = (E~I),E2 (1) . . . . .  E(1)) T. 

Let Fp_ 1 be the matrix of the first p - 1  columns of Fp. Let Yp=(Y-p+l, Y-p+2 ..... Yn-p) r ,  

the p-the column of Fp, b = Yp~p, an n•  vector ~p-1 = (r . . . . .  r r . Then we 
have 

Y = Fp•p+e (1) = (Fp_ 1 [ Y ) ~ p + E  (1> = Fp_l~p_l+YpCp+e (1) = Fe_l,p_l+b+eO). (4.2) 

Suppose, in fact, we have fitted an AR(p-1), i.e., 

Y = Fp_l~p_l+E(2) where  e (2) = (e~ 2), et 2) . . . . .  en(2)) T. (4.3) 

Then, the LSR of model (4.3) is given by 

r(2)= y_~, (2)=y_/T/y ,  where  H =  Fp_I(FT_IFp_I)-IFT_I. There fore ,  we  have  

r (2) = ( I - / t )Y = (I-ffl)(Fp_ld~p_l+b+eO)) = (l-/4)(b+eO)), ( because  (I-f f l)Fp_l~p_ 1 = O) 

which implies that r (2) differs from (I-/4)e (1) substantially unless b = 0. (C.f. eqn. (2.9).) 

5 0 u t l i e r s  in time series 

What are time series outliers? To motivate discussion, we consider first the simple 
AR(1) case. Suppose that we have n observations, Y1,Y2, �9 �9 �9 In ,  tentatively identified as 
coming from the following AR(1) model: 

Yt = (~Yt-l+Et, E t - N ( 0 , G 2 )  �9 (5.1) 

Let/~Ls denote the least square estimate of ~b. Let/~R denote a robust estimate of  ~), e.g., 
the GM-estimate as described in Kleiner, Martin and Thomson (1979). Let us write 

rr t = Yt--~RYt_I, t=1,2 ..... n 

the robust  f i t t ed  residuals (RFR). Recall that the least square fitted residuals 

r t = Yt--~LsYt_lt=I,2 ..... n 

are abbreviated by LSR. 
We consider now the scatter plot Yt versus Yt-1. There are three possible positions 

where potential outliers may occur. In Fig. l(a), the outlier is not a global ly  ex t reme 
po in t  and hence may be hidden in a marginal view of the data. The outlier may not be 
revealed by the examination of LSR since the estimated regression line may be 'pushed' 
towards the outlier. On the other hand, RFR may expose this outlier. In Fig. l(b), the 
outlier is quite clear and could be detected by "eyes" from the marginal view and the 
examination of RFR. Note that in this case, the examination of LSR could fail to detect 
the outlier. In Fig. 1(c), the outlier is 'consistent' with the regression line of  slope ~. 
Outliers of this kind do not have serious effect on the estimate of  ~) and may go unnoticed 
in the following situations. Suppose that eto is an innovation outlier. Then Yto can also be 
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'an oudi~r b~ reference to (5.1). Its effect could be carried t0 the next data point, i.e. 
Yto+l could be another outlier. The situation is illustrated by Fig. l(d). Then even if we 

know ~), the residual rto+l = Yto+l--~Yto could be small but the residual %+2 = Yto+z-r 
Could be large. As a result, the residuals can give misleading information about the posi- 
tions of  the outliers and may result in misspecifying the types of  outliers, e.g., innovation 
outliers may be misspecified as additive outliers. This situation could have a serious 
repercussion on the robust estimation of the spectrum. Similar problems may occur 
when consecutive additive outliers are present. A practical example will be given later in 
example 2. For the case of Gaussian AR(1) the usefulness of marginal view, LSR and 
RFR for detecting oufliers is thus questionable. Fortunately, for the simple cases illus- 
trated in Fig. 1 the outliers all lie outside the area of concentration of the bivariate normal 
distribution F(yt,yt_a). For marginal (univariate) and bivariate distributions, we have 
various graphical techniques to examine the normality of the data. For example, the nor- 
mal QQ-plot in the marginal case and the lag-1 scatter plot in the bivariate case. How- 
ever, for higher dimensions, it is difficult to picture the multivariate distribution of the 
data. Therefore, a 1-dimensional measure seems to be desirable. 

Martin (1983) has given a general definition for outliers in time series in this direction: 
A 

"Yt is an outlier if and only if the ~rediction residual r t = Y t -Y[  -1 is large rela- 

tive to SM 2 for some M". Here, Ytt-1 =E(Yt lYt_  1 ..... Yt-M) is the conditional- 

mean-prediction of Yt given Yt-1 ..... Yt-M, and SM 2 is the corresponding condi- 
tional mean-square error (MSE) of prediction. 

Let us discuss this definition. 
Following this definition, if the data come from an AR(p) model, then we may need to 

fit AR models from order 1 up to order p and examine the resulting residuals. Martin 
(1983, p. 195) suggested 4 as a pra,ctical choice of p. In addition, when there are outliers, 
the conditional-mean- predictor Y"t M must be robust-resistant (see, e.g., Martin (1983) 

p.196), which is more expensive to obtain. Therefore, using this method to detect 
outliers seems to be computationally quite expensive. On the other hand, note that for a 
Gaussian time series, 

f (Yt, Yt-1 ..... Yt-p) = f (Yt [Yt-1 ..... Yt-p)f  (Yt-1 [Yt-2 ..... Yt-p) " " f (Yt-p+l lYt-p)f (Yt-p) (5.2) 

At-1 ~2, N .  ^,-2 S~_I ) 0, So 2) =N(Yt ;Yt  ,~p) tYt-1;Yt-1, " "N(Y t -p ;  

where Sff = E(Yt 2) and, typically, N(y,;~ t- l ,  S~) denotes the Gaussian density function 

with mean ~i -1 and variance S ft. Suppose now that Yto is a transparent outlier in the mul- 

tivariate "view" f (Y t ,  Yt-1 .. . . .  Yt-p)" We may not be aware of its presence if we only 

examine the individual t e rms  f (Y t  Yt-1 .. . . .  Yt-p) ..... f (Y t -p) .  (Note that an examination of 
these terms corresponds to an examination of the marginal distribution and the residuals 
from AR(p) ..... AR(1).) For, suppose that the outlier Yto is large relative to Sp. Now, for 

M<__P,St~, which is always greater than S if, consists of two parts of errors, namely, the 

pure error and the error due to the lack of fit. Therefore, if the effect of Yto enters into the 

conditional term f (Yt  lEt-1 ..... Yt-M) and S~ is much greater than Sp 2, then Yto may not be 

large relative to S 2 and hence disguised in the "conditional" view. 

We propose an alternative 1-dimensional measure. 
Now, for a fixed M, z M = (Yt_I,Yt_2,Yt_M)T,t=I,2,...,N, is assumed to have a multivari- 

ate normal distribution. Let ~M be the variance-covariance of matrix of z M. The Gaus- 



sian feature of z M is reflected by the X 2 distribution of the 1-dimensional measure: 

d M = ztMT~mlZM 

This leads to a new approach for outlier detection to be discussed in the next section. 
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6 A new approach o outliers detection in linear autoregressive process 

We write the linear autoregressive process AR(p), {Yt},  in the following state space form: 

Yt = (1,0 . . . . .  0 ) a t +  1, (6.1) Zt+ 1 = B Zt+~t, 

where 

E't ----" (gt,0 ..... 0) T, 

~)1(~2... ~p-l~p 
1 0  0 0  
0 1  0 0 

B ~ . . 

d o  i d 
Suppose now that we have a realization of size n,Y1,Y2 ..... Yn say, from the AR(p) process. 

From the state space point of view, at time t, it is the relative position of  Yt,Yt-1 ..... Yt-p+l 

in the p dimensional space that we are interested in, not just the Yt itself. Therefore, it is 

more reasonable to refer to the state vector, i.e. "remote" state vectors. Geometrically 
speaking, we look for remote points in the p-dimensional space spanned by the columns 
o f F .  

To measure the "remoteness" of z t, an attractive metric seems to be the M a h a l a n o b i s  

dis tance,  d t, where 

d t = z T ~ - l z , .  

We note that z t = (Yt_I,Yt_2 ..... Yt_p) T is the state vector at t ime t - l ,  and that d, measures 

the Mahalanobis distance between the state vector at time t -1  and the zero vector (or the 
mean vector in the general case). 

Now, under the hypothesis that the autoregressive process is Gaussian and there is no 
outlier, it holds that 

V / = p + l  ..... n, d t -zp  2 

Therefore, by (3.9) nht leads i tsel f  as a useful  measure  f o r  outl ier  detect ion wi th in  the 

l inear Gauss ian  context.  This result is not valid in conventional regression analysis. The 
discussion in Section 3 suggests that it is practicable to use DEH to detect outlying state 
vectors. If  h t is sufficiently large, we may say z t is an outlying state vector. 

Recall that 

z t = (Yt_l,Yt_2 ..... Yt_p) T, t=l ,2  ..... n. h t = ztT(FTF)-lzt. 

Suppose that Yt-1 is large; then its effect will enter into z t, zt+ 1 . . . . .  Zt+p_ 1 and 

ht, ht+ 1 ..... ht+p_ 1 will be large. Therefore, if ht_ 1 is small (i.e. Yt-2, Yt-3 ..... Yt-p-1 are not 

outliers) and h t is large, we may identify Yt-1 as an outlier. We have noted earlier that 

when some of the h t ' s  are large, there are problems associated with using LSR for diag- 

nostic check and outlier detection. Now we see that when there are outliers, then some of 
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, x  iI lX x x .i..,i;..:,., .,,,,~ . !: < . .  . / "  • 
.~;.:.;)y, ...,.,.:jl, 1 :...!:ii~ '~ YH ,..,r ' " Yt-~ 

(o) (b) (c) (d) 

Figure 1. (a) Outliers hidden in marginal view of data; (b) "Clear" outlier, which can be detected by both 
marginal view and "robust" fitted residuals"; (c) Outliers consistent with the regression line; (d) Scatter plot 
when one innovation outlier ato is present 

h t 's  will be large. In fact, a simple examination of the LSR is not a good tool for outliers 

detection. Suppose Yt-1 is an outlier. Then h t, h~_ 1 . . . . .  ht+p_ 1 will be large and tend to 
reduce the residuals r t , . . . r t + p _  1 by reference to (2.9). As a result, even if 

I t ,  Yt+I ..... Yt+p-t are also outliers, r t, rt+ 1 . . . . .  r t + p _  l may not be sufficiently large and 
hence Yt, Yt+l ..... Yt+p-t may go unnoticed as outliers if only the LSR are examined. 

We may conclude that for time series data adequately described by an autoregressive 
model, the presence of an outlier may lead to a situation in which outliers immediately 
following it may go unnoticed if we rely exclusively on LSR for outlier detection., How- 
ever, in the context of time series, outliers can and do often occur in batches, for exam- 
ple, when innovation outliers are present (see, e.g., Fox (1972) and Kleiner, Martin and 
Thomson (1979)). 

7 Computational aspects 
Computational method for a single hat matrix has been discussed by many authors. See, 
for example, VeUeman and Welsch (1981) and Belsley, Kuh and Welsch (1980). In our 
case, we sometimes need to compute hat matrices for different AR orders. In the follow- 
ing, we give a rccursive formula for computing DEH for different orders, which is effi- 
cient and quite well suited for computer programming. 

The following notation will be adopted: 

Fro: n•  design matrix for the maximum AR order m 

Hp: n• hatmatrix forordcrp,  p = l , 2  ..... m 

hf:  t - t hDEHofHp ,  t=l ,2  ..... n 

R: mxm upper triangular matrix obtained from QR decomposition of F m 

M: M=[mij]=Fm R- t ,  an nxm matrix. 

Algorithm 

STEP 1: Compute R from QR decomposition (see, e.g., Lawson and Hanson (1974)). 
r l  

F m = Q  ] g / = 0 R  where (~is the first m columns of Q and O T O = I m . R  
I . . I  

may be obtained by the Householder transformation. Note that this is 
integral to the autoregressive model building anyway and therefore 
represents no additional computation. 
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STEP 2: Compute R -1. Note that R is an upper triangular matrix and can be stably 
inverted by backward substitution. R -1 is also upper triangular. 

STEP 3: Compute M =Fm R-I.  

STEP 4: L e t m r = ( m t t ,  mt2 ..... mtm) be the t-the mw of M. Then 

hF_l pal 2 = 2,mtj ,  t=l ,2 ..... n (3.6.1) 
j=l 

and 

hp = hf  -I  + m ~  Vp = 2,3 ..... m. (3.6.2) 

Proof  Let Mp be the p xp block consistuted by the first p columns of M. Then 

Hp = MpM T Vp=l,  2,...,m 

and (3.6.1), (3.6.2) follows immediately. 

Formula (3.6.1) and (3.6.2) provide us a very convenient and efficient method for com- 
puting DEH for the AR orders from one to m recursively. Note that the number of  opera- 
tions for computing DEH for all the orders from one to m is the same as that for the sin- 
gle order m. 

8 Comparison between using DEH and LSR for outlier detection 
(1) Untile now we have assumed that the order of  the AR model is known. Even then, 

LSR still suffer from many limitations as described previously. In practice, the 
order is rarely known. If  there are some outlying data, we do not as yet have a reli- 
able method to choose the order. Besides, LRS depend heavily on estimates of 
~(because r = Y-V~). As a result, we may be looking at something quite irrelevant 
when LSR are examined. Fortunately, the calculation of DEH does not depend on 
the estimates ~. Much of the conclusion on outlier detection using DEH remains 
valid even when the order unknown. If  we do want to examine DEH for different 
orders, the convenient recursive formula given in Section 7 is available. 

(2) LSR are underlined by a loss function (such as square loss function in least square 
procedure) while DEH are loss function free. This is important since, e.g., the 
square loss function 

L ( Y  ,(~) -- ~_~(Yi-zi~) 2 
i 

is of  questionable value when some of the observations are outliers. 

(3) It holds that trace (H)=~_,h t =p  = constant. It follows that if some of ht's are 
t 

extraordinarily large, then the other ht's must be small because of  the constant sum. 

Therefore, outlying ht's will stand out clearly. 

9 Examples 

Example 1. 

Two series NIOAR(2) and IOAR(2) of  size 100 are simulated from the following AR(2) 
model: 
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Yt = 0"9Yt-l-O'6Yti2+et �9 

In NIOAR(2), et-N(O, 0.03). In IOAR(2)I Et-N(0, 0.03) but es0 is set to 1, i.e., it is an 
innovation outlier. Figs. 2a, 2b are the time series plots of the two series. In IOAR(2), 
Ys0 and Y51 appear to be large. Fig. 3 shows the time series plot of the LSR from 
IOAR(2). As expected, only rs0 appears to be large and hence we could be misled into 
concluding that Ys0 is the only outlier, i.e., an "additive outlier". To examine DEll from 
the two series, we compare three kinds of plots: histogram (Stem-and-leaf plots), time 
series plot and scatter plot (Figs. 4a, b; 5a, b; 6a,b). From these plots, we see that there 
are three clear outlying data for the series IOAR(2), namely, hs1, h52, and h53. Therefore 

Zs1 = (YsoYn9)T,z52 = (Y51Yso) T and z53 = (Y52Y51) T are remote (outlying) state vectors. 
Since ht's, t<50 and >54 are small, the "remoteness" of ZSl,Z52 and z53 must be due to Ys0 
and Ys1- Therefore Ys0 and Y51 are identified as two consecutive outliers by examining 
DEH. The identification of consecutive outliers tends to suggest the possibility of under- 
lying innovation outlier. 

Example  2. 

The second example is taken from Marin, Damarov and Vandaele (1982). The series 
RESEX is monthly series of Bell Canada inward movement of residential telephone 
extensions in a fixed geographic area from January 1966 to May 1973, a total of 89 data. 
The time series plot of RESEX (Fig. 7a) shows clearly two extremely large values in 
November and December 1972 (correspond to the 83th and 84th observations) due to a 
November "bargain month", i.e., free installation of residence extensions, and a spillover 
effect in December because not all November's orders could be fitted in the same month. 
Brubacher (1974) identified an ARIMA(2,0,0)x(0,1,0)12 models, i.e., RESEX data is 
represented by an AR(2) model after seasonal differencing. L.S. estimates of the AR(2) 
model are ~1 = 0.537,~2=-0-106 and the resulting residuals are plotted in Fig. 8. As 

expected, only r83 is large. (h84 is as large as 0.91[). LetX n denote the RESEX data. 

Martin and Zeh (1977) have obtained the robust GM-estimates (~1 = 0.50,~2 = 0.38) 
and discussed the resulting RFR for this series. The lag-1 scatter plot (Figure 9.b) of 
these RFR shows five outlying points. At first sight, it might be expected that these large 
values correspond to the outliers X83,X84 in the data. In fact, from the time series plot of 
RFR (Figure 9.a) we see that the outlying points in the residuals are r83, r85 and r86 
(instead of rs3 and r84). As a result, the RFR provide misleading information about the 
positions of the outliers, a situation already discussed in Section 5. In fact, the above 
authors have noticed the problem of using this kind of residuals for determining the types 
of outliers. By contrast, an examination of the DEH along the same line as in example 1 
has enabled us to identify the observations in November and December 1972 as outliers. 
(See Figs 10a, 10b and 10c) 

10 Generalization to non-linear threshold autoregressive models 

Threshold autoregressive models (TAR) were proposed by Tong (1978) and it seems to 
be generally agreed that they from one useful class of non-linear time series models. 
(See, e.g., discussion of Tong and Lira, 1980). For a comprehensive account of this class 
of models, see Tong (1983). It may be remarked that these models have helped to bring 
about a rapid development of non-linear time series analysis. See, e.g., recent review 
paper by Tong (1987). 

We discuss now the self-exciting threshold autoregressive model of order (2; k 1, k2), or 
SETAR (2; k 1, k2) model, which is of the following form: 
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Figure 2. (a) Time series plot of NIOAR(2); (b) Time series plot of IOAR(2) 

r~ 

I0 50 lO0 
t 

Figure 3 

Midpoint Count Midpoint Count 
0.00 40 0.00 19 
0.02 40 0.01 28 
0.04 14 0.02 18 
0.06 1 0.03 17 
0.08 0 0.04 10 
0.10 1 0.05 3 
0.12 0 0.06 0 
0.14 0 0.07 0 
0.16 0 0.08 3 
0.18 0 
0.20 2 

a) b) 

Figure 4a,b 

Figure 3. Time series plot of LSR of IOAR(2) 

Figure 4. (a) Frequency counts of DEH of NIOAR(2); (b) Frequency counts of DEH of IOAR(2) 

( k+ 
1) (1) if Xt_d<_r 

X t = (10.1) 
[ao(Z) ~: : aiO')Xt_j+et if Xt_d > r 

where d and r are delay and threshold parameters respectively. For each i=1, 2, e(i)'s are 

assumed to be i.i.d, and normally distributed, say, eft ) -N(O, ai 2) i=1,2. For the estima- 

tion of  ay ), 02; i=1,2, j=O, 1 ..... k i, we can extend the conventional least square pro- 
cedure since model (10.1) consists of 2 piecewise linear models (Tong (1983) p.133). 
Suppose now we have n observations X1, X 2 ..... X n from SETAR (2; k 1, k2). Let the delay 

parameter d and the threshold parameter r be fixed. Let k=max(kl, k2, d). The (effec- 

tive) data {Xk+ 1 ..... X n} may be divided into two sets by the rule: 
Xj E first set if and only i fXj_d<r , 

Xj e second set if and only ifXj_a>r. 
Let {X)ll),X)~ ) ..... xj(lnl ) ..... X)lnl )} and {X)21),Xj(~ ) ..... Xj~)}, (nl+n2 = n), denote the data 

in the first and second sets respectively, after the division. We have the following "piece- 
wise linear model" formalism: 
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Figure 6. (a) Scatter plot of DEH of NIOAR(2); (b) Scatter plot of DEH of IOAR(2) 

)). 

i i 

{ x IO -2) 

X '  = A,  01 + e 1 

2 A2 02 + g2 

where, for i=1,2, X i = (Xj(~) ..... Xj~)) T, e i = (e)~) ..... ~.(ihT "jnff , Oi = (a(i) ..... a~f)), and 

A i =  

zi(i) r 

z2(i) r 

z2 

x I)_2 �9 xjl)_k, 
v ( i )  x ( i )  . ' .  x ( i )  
a j 2 - 1  j 2 - 2  j2-kl 

x 2_, xf2_, X#n?_,, 
i T 

whereZ/() =(1 xjli)_ 1 xjti)_ 2 xjti)_k). 

(lo.2) 

Because of the piecewise linearity, the procedure for outlier detection in the linear AR 
case can be generalized straightforwardly to the case of threshold autoregressive model. 
In the case of SETAR model (10.2), we define hat matrices TAR H i, i=1,2, as follows: 

TARH i = A i ( A  T A i ) - I A  T, i=I,2.  

For outlier detection in model (10.2), the diagonal elements ht (i) of TARH i (denote b y  

DEHi)  are examined. Large values of h[i)'s correspond to outlying row vectors zt(iF's of 
A i. In the linear AR case, a large value, h,o say, is due to the fact that some of the 

Xto_ 1 . . . . .  and Xto_k, are large. In the case of SETAR modeling, of course, Xt~i)_ 1 is not. 
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Figure 7. (a) Time series plot of RESEX; (b) Time series plot of differenced RESEX 
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Figure 8. Time series plot of LSR of RESEX 

necessarily Xto_ 1. Therefore, unlike the linear AR case, even if ht~i)_ 1 is small and ht~ i) is 

large, we cannot conclude that Xt0_ 1 is an outlier. To identify outliers, it is suggested that 

we print out the design matrix A i with the vector h i augmented in the last column: 

[i =(A/Ih/ ) ,  where h T = ( h l  (i), h2 (i) . . . . .  h (n: )) and hj(i) = z:i)r (ATAi)-lzj(i) 

Examining D E H  i using this format, we can see clearly the relationship between DEH i 
and the original observations and can therefore identify outlying data if any exist. 

One problem of using DEH for outlier detection in SETAR modeling is that we do not 
know as yet the distribution of ht (i), i=1,2, t=l ,2 ..... n i. Experience suggests that ht(i)'s 
are very sensitive to ontliers and outlying data will cause extreme values in ht(i)'s which 

will stand out clearly. In any event, we can identify those data which are the most 
influential. Therefore, examining DEH still seems to be worthwhile in the case of  
SETAR modeling. 

Example 3. 
TAR1 is a series of 140 observations simulated from the following SETAR (2; 1, 1) 
model: 

-2.0St_l+g t g t - N(0, 0 . 2  2) 

St= -O. 4Xt_l +tt 

The 53th observation X53=0.322 of TAR1 is changed to X53=1.2, i.e., an additive 
outlier. We denote the resulting series by AOTAR1. The first 100 data of  TAR1 and 
AOTAR1 are shown in Fig. 11. Note that X53 is still within the dynamic range. Let us 
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Figure 10. (19) Time series plot of DEH of RESEX; (c) Scatter plot of DEH of RESEX 

now examine the DEHi,i=I,2, for these two series. Since the outlier X53 affects only 

DEH 2, we compare only DEH 2 of TAR1 and AOTAR1. From the histograms, time 

series plots, and scatter plots (Fig.  12a, 12b and 12c respectively), we are able to identify 
h2(~ ), which corresponds to X53, as an influential data. 

Example 4. 

Table 1 is the well-known data set (log-transformed) of Canadian LYNX trapped in the 
Mackenzie River district of North-west Canada for the period 1821-1934. Fig. 13 shows 
the time series plot of these 114 data. This data set appeared originally in a paper by 
Elton and Nicholson (1942). This is a "noisy" data set and outliers may be suspected. 
(See Elton and Nicholson (1942) for an account of the collection of data). A routine 
application of the method developed in the previous sections for linear autoregressive 
models reveals that more than one third of the data should be considered oufliers! This 
clearly demonstrates the inadequacy of linear autoregressive models for the data. A 
non-linear model is therefore entertained. Tong and Lim (1980) have fitted a a threshold 
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Figure 11. Time series plot of AOTAR1 
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0.00 55 0.00 19 
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0.28 0 0.07 2 
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Figure 12a 

Figure 12a. i) Frequency counts of DEH in the 2nd piece of TARI; ii) Frequency counts of DEH in the 
2nd piece of AOTAR1 
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Figure 12c. i) Scatter plot of DEH in the 2nd piece of TAR1; ii) Scatter plot of DEH in the 2nd piece of 
AOTAR 1 

model to the first 100 data and we examine the D E H  i, i=1,2, for this model. The time 

series plots, stem-and-leaf plot are shown in Figs. 14a and 14b respectively. From these 
plots we do not see any clear outlying ~oints, but we can nevertheless identify the most 
influential data. In the first piece, h3 (1), h3(~ ), h4 (1) and h5 (1) have the largest values. 

Therefore the corresponding row vectors of the design matrix A 1 in the first piece are the 

most influential vectors. To identify which observations correspond to these vectors, we 
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Figure 14. (a) Time series plot of ht(1); (b) Stem-and-leaf display of ht (1) 

Figure 14b 

examine the design matrix A t with vector h 1 of DEH, augmented in the last column, 

which is shown in Table 2. From Table 2 we see that h3(~ ), h3(~ ) and hnCo 1) correspond to 

the observations X1891 , X1892, and X1893. h5 (1) corresponds to the vector of observations 

(X1918 X1917 X1916 X1915 X1914 ). Note that h}~ ), which corresponds to the vector (X1919 

X1918 X1917 X1916 X1915), is small when compared with h~  ). Altogether, it would seem 

that X1891, X1892, X1893 and X1914 are the most influential data. Similarly, from the exami- 
nation of DEH 2 (see Figs. 15a and 15b) the state vector (X1904X1905) turns out to be the 
most influential. 

On referring to the history of the data set (Elton and Nicholson (1942)), it transpires 
that these 114 data came from three different sources. Briefly, records from 1812 to 
1891 and from 1897 to 1913 were obtained from the London archives of Hudson's Bay 
Company and those for 1815-34 were from the Company's fur Trade Department in Win- 
nipeg. Those for 1892-1896 and 1914 were supplied to Elton in 1928 by Mr. Charles 
French, then Fur Trade Commissioner of the Company in Canada, who said that the fig- 
ures were obtained from private records kept by some of the older fur-trade factors. It is 
intriguing that our analysis of DEH 1 (but not of DEH2) seems to be reasonably compati- 

ble with the historical background. Of course, we cannot rule out the possibility that the 
apparent compatibility is just a coincidence. It is also interesting to report that an exami- 
nation of the DEH corresponding to linear AR models does not lead to similar results. 
(Details are given in an unpublished M.Phil. thesis, Chinese University of Hong Kong, 
1984). 
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Figure 15. (a) Time series plot of h,[2); (b) Stem-and-leaf display of ht ~2) 
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Figure 16. Level of Lake Huron in feet (reduced by 570), 1875-1972: identified outliers are marked by [] 

Table L Log transformed LYNX data (1821 - 1934) 

Year 1 2 3 4 5 6 7 8 9 10 
1821- 1830 2.4298 2.5065 2.7672 2.9400 3.1688 3A504 3.5942 3.7740 3.6946 3.4111 
1831- 1840 2.7185 1.9912 2.2648 2.4456 2.6117 3.3589 3.4289 3.5326 3.2610 2.6117 
1841- 1850 2.1790 1.6532 1.8325 2.3284 2.7372 3.0141 3.3282 3.4041 2.9809 2.5575 
1851- 1860 2.5763 2.3522 2.5563 2.8639 3.2143 3.4354 3.4580 3.3261 2.8351 2.4757 
1861- 1870 2.3729 2.3892 2.7419 3.2103 3.5200 3.8274 3.6288 2.8370 2.4065 2.6749 
1871 - 1880 2.5539 2.8943 3.2025 3.2243 3.3524 3.1541 2.8785 2.4757 2.3032 2.3598 
1881- 1890 2.6712 2.8669 3.3101 3A489 3.6465 3.3998 2.5899 1.8633 1.5911 1.6902 
1891- 1900 1.7709 2.2742 2.5763 3.1113 3.6054 3.5434 2.7686 2.0212 2.1847 2.5877 
1901- 1910 2.8797 3.1163 3.5397 3.8445 3.8002 3.5791 3.2639 2.5378 3.5821 2.9077 
1911- 1920 3.1424 3.4334 3.5798 3.4901 3.4749 3.5786 2.8287 1.9085 1.9031 2.0334 
1921- 1930 2.3598 2.6010 3.0538 3.3860 3.5532 3.4676 3.1867 2.7235 2.6857 2.8209 
1931 - 1934 3.0000 3.2014 3.4244 3.5310 



258 

Table 2, Design matrices of LYNX data 

I st piece 
zl h, 

l 1.9912 2.7185 3.4111 3.6949 3.7740 0.1123 
2.2648 1.9912 2.7185 3.4111 3.6946 0.1529 
2.4456 2.2648 1.9912 2.7185 3.4111 0.1523 
2.6117 2.4456 2.2648 1.9912 2,7185 0.1536 
3.3589 2.6117 2.4456 2.2648 1.9912 0,1615 
2.1790 2.6117 3.2610 3.5326 3.4289 0.0618 
1.6532 2.1790 2.6117 3.2610 3.5326 0.1361 
1.8325 1.6532 2.1790 2.6117 3.2610 0,1652 
2.3284 1.8325 1.6532 2.1790 2.6117 0.1214 
2.7372 2.3284 1.8325 1.6532 2.1790 0.0924 
3.0141 2.7372 2.3284 1.8325 1.6532 0.1199 
3.3282 3,0141 2.7372 2.3284 1.8325 0.1431 
2.5575 2.9809 3.4041 3.3282 3.0141 0.0895 
2.5763 2.5575 2.9809 3.4041 3.3282 0.0585 
2.3522 2.5763 2.5575 2.9809 3.4041 0.0937 
2.5563 2.3522 2.5763 3.5575 2.9809 0.0860 
2.8639 2.5563 2.3522 2.5763 2.5575 0.0729 
3.2143 2.8639 2.5563 2.3522 2.5763 0.0721 
2.4757 2.8351 3.3261 3.4580 3.4354 0.0645 
2.3729 2.4575 2.8351 3.3261 3.4580 0.0400 
2.3892 2.3729 2.4757 2.8351 3.3261 0.0383 
2.7419 2.3892 2.3729 2.4757 2.8351 0.0398 
3.2103 2.7419 2.3892 2.3729 2.4757 0.0674 
2.4065 2.8370 3.6288 3,8274 3.5200 0.1041 
2.6749 2.4065 2.8370 3.6288 3.8274 0.1478 
2.5539 2.6749 2.4065 2.8370 3.6288 0.1879 

t 2.8943 2.5539 2.6749 2.4065 2.8370 0.1635 
3.2025 2.8943 2.5539 2.6749 2.4065 0.151 i 
2.4757 2.8785 3.1541 3.3524 3.2243 0.0803 
3.3032 2A757 2.8785 3.1541 3.3524 0.0312 
2.3598 2.3032 2.4757 2.8785 3.1541 0.0276 
2.6712 2.3598 2.3032 2.4757 2.8785 0.0328 
2,8669 2.6712 2.3598 2.3032 2.4757 0.0481 
3.3101 2.8669 2.6712 2.3598 2.3032 0.0885 
1.3633 2.5899 3.3998 3.6465 3.4489 0.1198 
1.5911 1.3633 2.5899 3.3998 3.6465 0,1153 
1.6902 1 ,5911 1.8633 2.5899 3.3998 0.1453 
1.7709 1.6902 1.59 ! 1 1.3633 2.5899 0,1983 

�9 2.2742 1.7709 1.6902 1.591 i 1.8633 0.2004 
�9 2.5763 2.2742 1.7709 1.6902 1.5911 0.2178 

3.1113 2.5763 2.2742 1.7709 1.6902 0.1235 
2.0212 2.7686 3.5434 3.6054 3.1113 0.1623 
2.1847 2.0212 2.7686 3.5434 3.6054 0.1377 
2.5877 2.1847 2.0212 2.7686 3.5434 0.1329 
2.8797 2.5877 2.1847 2.0212 2.7686 0.1256 
3.1163 2.8797 2.5877 2.1847 2.0212 0.0826 
2.5821 2.5378 3.2639 3.5791 3.8002 0.1586 
2.9074 2.5821 2.5378 3.2639 3.5791 0.1595 
3.1424 2.9074 2.5821 2,5378 3.2639 0,1823 
1.9085 2.8287 3.5786 3.4749 3.4901 0.2119 

1 1 .9031 1.9085 2.8287 3.5786 3.4749 0.1681 

2nd piece 
~l h, 

| 3.411 ! 3.6946 0.0738 
2.7185 3.4111 0.0964 
3.4289 3.3589 0.0349 
3.5326 3.4289 0.0372 
3.2610 3.5326 0.0341 
2.6117 3.2610 0.1276 
3.4041 3.3282 0.0380 
2.9809 3.4041 0.0466 
2.4354 3.2143 0.0702 
3.4580 3.4354 0.0308 
3.3261 3.4580 0.0261 
2.8351 3.3261 0.0715 
3.5200 3.2103 0.0814 
3.8274 3.5200 0.0819 
3.6288 3.8274 0.1404 
2.8370 3.6288 0. I 170 
3.2243 3.2025 0.0630 

1 3.3524 3.2243 0.0604 
3.5141 3.3524 0.0330 
2,8785 3.1541 0.1000 
3.4489 3.3101 0.0447 
3.6465 3.4489 0.0502 
3.3998 3.6465 0.0577 
2.5899 3.3998 0.1305 
3,6054 3.1113 0.1399 
3.5434 3.6054 0.0526 
2.7686 3.5434 0,1063 
3.5397 3.1163 0.1259 
3.8445 3.5397 0.0864 
3.8002 3.8445 0.1668 
3.5791 3.8002 0.1235 
3.2639 3.5791 0.0429 
2.5378 3.2639 0.1479 
3.4334 3.1424 0.0989 
3.5798 3.4334 0.0421 
3.4901 3,5798 0.0442 
3.4749 3.4901 0.0327 
3.5786 3.4749 0,0412 

l 2.8287 3.5786 0.1019 
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11 A hydrological example 
The final example is concerned with the level of  Lake Huron for July of each year from 
1875 to 1972 inclusively as listed in the recent book by BrockweU and Davis (1987, 
p.499). Preliminary data analysis reveals that a first differencing or possibly a second 
differencing of the data is advisable so as to reduce the data to stationarity in the mean 
(c.f. Box and Jenkins, 1970). The hat matrix technique then suggests the patch of the 
points numbered approximately 55 to 63 and the last datum as outliers. On assuming that 
the listing is error-free up to data point numbered say 65, then the suggested outlying 
patch corresponds to the period of the 1930's. It would then seem interesting to explore 
the connection between this and the famous dust-bowl period of the 1930's. As for the 
suggested outlying singleton, it seems that it may well be due to the omission of a 
column of twelve data taking place in the vicinity of the singleton. The book has inad- 
vertently listed only 86 of the announced 98 data! 

We have included the above example merely to illustrate the potential of our metho- 
dology in analysising hydrological time series. We do not pretend that the analysis is 
complete. However, a complete analysis can only be possible with access to information 
not at present available to us, e.g. the omitted column of  data, the amount of precipita- 
tion, the temperature and the wind speed, ect. in the Lake Huron catchment area, and 
similar data on Lake Huron's neighboring great lakes. 

12 Concluding remarks 
Examination of the DEH gives a direct, efficient and conceptually appealing method for 
outlier detection in autoregressive modeling. We have demonstrated that it has definite 
practical advantages over simple examination of  LSR and RFR. However, we have 
throughout this paper avoided rigorous limit arguments, i.e., subsequent rigorization of  
our heuristics may be deemed necessary by a more mathematical audience. We plan to 
supply the rigor elsewhere along the lines developed by Kunsch (1984). 
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